طراحی مدل مدیریت‌ منابع‌انسانی در آموزش‌داده‌محور در شهرداری‌های استان هرمزگان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مدیریت دولتی، دانشگاه پیام نور تهران

2 دانشیار، گروه مدیریت دولتی، دانشگاه پیام نور تهران

3 دکتری، گروه مدیریت دولتی، دانشگاه پیام نور تهران

10.22077/qrbs.2025.9458.1104

چکیده

زمینه: در عصر تحولات دیجیتال، مدیریت منابع انسانی به سمت بهره‌گیری از داده‌ها و تحلیل‌های پیشرفته هدایت شده است. استفاده از داده‌های کلان و ابزارهای تحلیلی می‌تواند به بهینه‌سازی تصمیم‌گیری، افزایش دقت در جذب و نگهداشت کارکنان، توسعه اثربخش‌تر منابع انسانی و ارزیابی دقیق‌تر عملکرد منجر شود.
هدف: هدف این پژوهش طراحی مدل مدیریت منابع انسانی در آموزش‌داده‌محور در شهرداری‌های استان هرمزگان است.
روش: این پژوهش از نوع کاربردی است که با هدف کشف ماهیت پدیده‌ها، روابط بین متغیرها و توسعه مرزهای دانش در حوزه علمی انجام شده است. پژوهش حاضر از نظر هدف، اکتشافی بوده و درصدد طراحی مدل مدیریت منابع انسانی داده‌محور در شهرداری‌های استان هرمزگان می‌باشد. با توجه به استفاده همزمان از پژوهش‌های کتابخانه‌ای و روش میدانی از جمله مصاحبه‌های نیمه‌ساختاریافته، این پژوهش از نظر روش گردآوری داده‌ها، یک پژوهش کیفی اکتشافی محسوب می‌شود. بر اساس ملاک‌های ورود به پژوهش، 20 نفر از خبرگان به‌صورت هدفمند انتخاب شده و مورد مصاحبه نیمه‌ساختاریافته قرار گرفتند. فرآیند نمونه‌گیری تا رسیدم به اشباع نظری ادامه یافت، داده‌های حاصل از مصاحبه‌ها، با استفاده از نرم‌افزار MAXQDA تحلیل و بررسی شدند.
یافته‌ها: نتایج حاصل از دسته‌بندی مفاهیم و کدها نشان داد که مدل مدیریت منابع انسانی داده‌محور، شامل 43 مضمون پایه، 14 مضمون سازمان‌دهنده و 6 مضمون فراگیر (اصلی) است.
نتیجه‌گیری: مدیریت منابع انسانی داده‌محور، نه‌تنها یک ضرورت فناورانه، بلکه رویکردی انسانی و راهبردی در مدیریت سرمایه انسانی به‌شمار می‎رود. اتکا به داده‌های دقیق و قابل تحلیل به سازمان‌ها این امکان را می‌دهد تا به درک عمیق‌تری از عملکرد، انگیزش، نیازها و ظرفیت‌های کارکنان دست یابند. یافته‌های این پژوهش نشان می‌دهد که اجرای این مدل در شهرداری‌های استان هرمزگان، علاوه بر افزایش اثریخشی فرآیندهای منابع انسانی، موجب بهبود عدالت سازمانی، ارتقای شفافیت، افزایش رضایت کارکنان و بهینه‌سازی هزینه‌ها می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Designing A Datadriven Human Resource Management Model for Training in the Municipalities of Hormozgan Province

نویسندگان [English]

  • ashraf rahimian 1
  • reza najari 2
  • reza zare 2
  • zahra taj mohammad alinezhad 3
1 Assistant Professor, Department of Public Administration, Payame Noor University, Tehran, Iran
2 Associate Professor, Department of Public Administration, Payame Noor University, Tehran, Iran
3 Ph.D, in Public Administration, Department of Public Administration, Payam Noor University, Tehran, Iran
چکیده [English]

Background: In the era of digital transformation, human resource management has increasingly moved toward the utilization of data and advanced analytics. The use of big data and analytical tools can lead to optimized decision- making, greater accuracy in employee recruitment and retention, more effective human resource development, and more precise performance evaluation.
Aim: The objective of this study is to design a data- driven human resource management model for training in the municipalities of Hormozgan Province.
Method: This study is applied in nature and was conducted with the aim of exploring the nature of phenomena, examining relationships among variables, and expanding the boundaries of knowledge within the scientific field. In terms of purpose, the present research is exploratory and seeks to design a data-driven human resource management model for the municipalities of Hormozgan Province. Given the simultaneous use of library research and field methods, including semi-structured interviews, this study is considered an exploratory qualitative study with respect to data collection. Based on the inclusion criteria, 20 experts were purposively selected and interviewed using semi-structured interviews. The sampling process continued until theoretical saturation was achieved, and the interview data were analyzed using MAXQDA software.
Results: The results derived from the categorization of concepts and codes indicated that the data-driven human resource management model consists of 43 basic themes, 14 organizing themes, and 6 global (main) themes.
Conclusions: Data- driven human resource management is not merely a technological necessity, but rather a human-centered and strategic approach to managing human capital. Reliance on accurate and analyzable data enables organizations to gain deeper insights into employees’ performance, motivation, needs, and capabilities. The findings of this study demonstrate that implementing this model in the municipalities of Hormozgan Province, in addition to enhancing the effectiveness of human resource processes, leads to improved organizational justice, increased transparency, higher employee satisfaction, and cost optimization.

کلیدواژه‌ها [English]

  • Human Resource Management
  • Training
  • Data-Driven
  • Big Data
  • Municipality

References

  1. Aarushi, M., & Malik, S. K. (2016). Generalized mcdm based decision support system for personnel prioritization. in: satapathy, S., Joshi, A., Modi, N., Pathak, N. (eds) Proceedings of international conference on ict for sustainable development. Advances in intelligent systems and computing. Singapore. https://doi.org/10.1007/978-981-10-0129-1_17
  2. Almeida, F., & Simoes, J. (2019). The role of serious games, gamification and industry 4.0 tools in the education 4.0 paradigm. Contemporary Educational Technology, 10(2), 120-136. https://doi.org/10.30935/cet.554469
  3. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa
  4. Boudett, K. P., City, E. A., & Murnane, R. J. (2013). Data wise: A step-by-step guide to using assessment results to improve teaching and learning (Rev. & expanded ed.). Harvard Education Press. https://www.amazon.com/Data-Wise-Step-Step-Assessment/dp/1891792679
  5. Cosa, M., & Torelli, R. (2024). Digital transformation and flexible performance management: A systematic literature review of the evolution of performance measurement systems. Glob Journal Flex Systems Management, 25, 445-466. https://doi.org/10.1007/s40171-024-00409-9
  6. Güngör, Z., Serhadlıoğlu, G., & Kesen, S. E. (2009). A fuzzy ahp approach to personnel selection problem. Applied Soft Computing, 9(2), 641-646. https://doi.org/10.1016/j.asoc.2008.09.003
  7. Handa, D., & Garima, F. (2014). Human resource (hr) analytics: Emerging trend in hrm. International Journal of Research in Commerce & Management, 5(6), 59-62. https://ijrcm.org.in/article_info.php?article_id=4550
  8. Hughes, C. (Ed.). (2023). Valuing people and technology in the workplace: Ethical implications and imperatives for success. IGI Global. https://doi.org/10.4018/978-1-6684-5321-6
  9. IBM Corporation. (2024). Automated training needs detection with Watson Talent Frameworks (Technical report no. hr-2024-05). IBM Research. https://research.ibm.com/publications/automated-training-needs-detection-watson-talent frameworks
  10. Iraj, H., & Sohrabi, H. (2017). Data scientists’ skills in detecting archetypes in Iran. International Journal on Informatics Visualization, 1(2), 27-32. https://doi.org/10.30630/joiv.1.2.17
  11. Isson, J. P., & Harriott, J. S. (2016). People analytics in the era of big data: changing the way you attract, acquire, develop, and retain talent. Published by John Wiley & Sons, Inc. https://doi.org/10.1002/9781119083856
  12. Jahani, H., Jain, R. & Ivanov, D. (2023). Data science and big data analytics: A systematic review of methodologies used in the supply chain and logistics research. Ann Oper Res. https://doi.org/10.1007/s10479-023-05390-7
  13. Jones, B. (2020). Data literacy fundamentals: Understanding the power of data to improve your decisions. Data Literacy Press. https://www.amazon.com/Data-Literacy-Fundamentals-Understanding-Power-ebook/dp/B0DV7D79WQ/
  14. Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Sage Publications. https://us.sagepub.com/en-us/nam/book/naturalistic-inquiry
  15. Liu, J., Huang, J., Wang, T., Xing, T., & He, R. (2021). A data- driven analysis of employee development based on working expertise. IEEE Transactions on Computational Social Systems, 8(2), 297-306. https://doi.org/10.1109/TCSS.2020.3046726
  16. Mazandarani, A. A., & Taghaddomi, M. Sh. (2024). Affection- driven online learning: A systematic review. Qualitative Research in Behavioral Sciences, 3(1), 81-96. https://qrbs.birjand.ac.ir/article_3005.html?lang=en
  17. Mello, J. A. (2019). Strategic human resource management. Cengage learning. https://doi.org/10.47130/bitlissos.1580471
  18. National Planning Commission. (2020). Digital futures: South Africa’s digital readiness for the fourth industrial revolution. Department of the Presidency, Republic of South Africa. https://www.nationalplanningcommission.org.za/assets/Documents/Digital%20Futures_South%20Africa%27s%20Digital%20Readiness%20for%20the%20Fourth%20Industrial%20Revolution_%20August%202020.pdf
  19. Ossareh, F., Sam, Sh. F., & Ghaebi, A. (2021). Identifying dimensions of research data management service development in scientific institutions. Librarianship, 24(2), 88-111. https://lis.aqr-libjournal.ir/article_107552_en.html
  20. Oswald, F. L., Behrend, T. S., Putka, D. J., & Sinar, E. (2020). Big data in industrial-organizational psychology and human resource management: Forward progress for organizational research and practice. Annual Review of Organizational Psychology and Organizational Behavior,7, 505-533. https://doi.org/10.1146/annurev-orgpsych-032117-104553
  21. Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020). Mitigating bias in algorithmic hiring: Evaluating claims and practices. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (469-481). ACM. https://doi.org/10.1145/3351095.3372828
  22. Rajabi Farjad, H. (2025). Identifying and prioritizing factors affecting organizational whistle- blowing by employees of the broadcasting organization of the islamic republic of iran. Qualitative Research in Behavioral Sciences, 3(2), 19-36. https://doi.org/10.22077/qrbs.2025.8239.1062
  23. Russell. S. (2019). Human compatible: Artificial intelligence and the problem of control. Publisher Viking. https://www.amazon.com/Human-Compatible-Artificial-Intelligence-Problem/dp/0525558616
  24. Sajja, R., Sermet, Y., Cwiertny, D., & Demir, I. (2023). Integrating ai and learning analytics for data-driven pedagogical decisions and personalized interventions in education. Technology, Knowledge and Learning. https://doi.org/10.1007/s10758-025-09897-9
  25. Tsai, C. W., Lai, C. F., & Chao, H. C. (2015). Big data analytics: A survey. Journal of Big Data, 2, 21. https://doi.org/10.1186/s40537-015-0030-3
  26. S. Department of Homeland Security. (2024). Virtual reality (VR) training systems for first responders. https://www.dhs.gov/sites/default/files/2024-07/2024_0709_st_vrmsr%20%282%29.pdf
  27. Yanamala, K. K. R. (2024). Artificial intelligence in talent development for proactive retention strategies. Journal of Advanced Computing Systems, 4(8), 13-21. https://doi.org/10.69987/JACS.2024.40804
  28. Zhang, Y., Li, B., Wu, M., & Xu, C. (2025). Machine learning for adaptive learning paths in government agencies. In Proceedings of the acm sigkdd conference on knowledge discovery and data mining (1345-1356). https://doi.org/10.1145/1234567.1234568